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Abstract. We investigate the two-dimensional eight-states ferromagnetic Potts model in the Voronoi-
Delaunay tessellation. In this study, we assume that the coupling factor J varies with the distance r
between the first neighbors as J(r) ∝ e−αr, with α ≥ 0. The disordered system is simulated applying
the single-cluster Monte-Carlo update algorithm and the reweighting technique. We find that this model
displays a first-order phase transition if α = 0.0, in agreement with previous recent studies. For α = 0.5
and 1.0, a typical second order transition is observed and the critical exponents for magnetization and
susceptibility are calculated.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 68.35.Rh Phase transitions and critical
phenomena – 05.10.Ln Monte Carlo methods

1 Introduction

It is well-known that the ferromagnetic Potts model with
q-states in two-dimensional lattices displays first order
phase transitions for q > 4 [1,2]. In a recent paper, Chen
et al. [3] studied the effect of quenched, bond random-
ness on the nature of the phase transition in the two-
dimensional eight-states Potts model. Their model is a re-
stricted version of the random bond Potts model discussed
by Wu [1] with two ferromagnetic couplings factors, J1 and
J2, chosen with probabilities p and (1 − p), respectively.
Using Monte-Carlo simulations, they showed that, at suf-
ficiently high values of J1/J2, the transition changes from
first to second order. Janke et al. [4] used the Voronoi-
Delaunay tessellation in two-dimensions to study the fer-
romagnetic Ising model. They found that the critical ex-
ponents agree with the exactly known critical exponents
for regular lattices. In a more recent paper, Janke and
Villanova [5] have used the same lattice for the eight-states
Potts model to demonstrate that this kind of quenched
bond disorder (disorder in the number of coordination,
not in the coupling factor J) does not change the order of
transition. Recently, Berche et al. [6] performed a Monte-
Carlo simulation in a two-dimensional eight-states ferro-
magnetic Potts model with an aperiodic modulation of
the exchange coupling. They found that, depending on
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the kind of modulation, the critical exponents assume dif-
ferent values.

In the present study, we investigate the same model of
Janke and Villanova [5], and use an entirely similar algo-
rithm to compute the relevant thermodynamical proper-
ties of the system. However, considering that the distance
r between first neighbors changes randomly from neigh-
bor to neighbor, here we assume that the coupling factor
J varies exponentially with r. In the limiting case of con-
stant J , we recover the results of Janke and Villanova [5].
In the general case of J(r) ∝ e−αr, we show that, de-
pending on the value of α, the magnetic phase transition
changes from first to second order.

2 Model and simulation

We consider the eight-states Potts ferromagnet (q = 8) in
a Poissonian random lattice where the coordination num-
ber varies locally. The Voronoi construction or tessella-
tion for a given set of points in the plane is defined as
follows. For each point, we first determine the polygonal
cell consisting of the region of space nearer to that point
than to any other point. Whenever two such cells share an
edge, they are considered as neighbors. From the Voronoi
tessellation, we can obtain the dual lattice by the follow-
ing procedure. When two cells are neighbors, one draws a
link between the two points located in the cells. From the
links, one obtains the triangulation of space that is called
the Delaunay random lattice. The Delaunay lattice is dual
to the Voronoi tessellation in the sense that points corre-
spond to cells, links to edges and triangles to the vertices
of the Voronoi tessellation.
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The Hamiltonian of an eight-states ferromagnetic
Potts model can be written as

−KH =
∑
<i,j>

Jijδσiσj , (1)

where K = 1/kBT , T is the temperature, kB is the Boltz-
mann constant, δ is the Kronecker delta function, the sum
goes over all nearest-neighbors pairs of sites (points in the
Voronoi construction) and the spin σ can take the values
σ = 1, ...., 8. Here, we assume that the coupling factor Jij
depends on the relative distance rij between sites i and j
according to the following expression:

Jij = J0e−αrij , (2)

where J0 is a constant and α ≥ 0 is a model parameter.
We apply the single-cluster update algorithm [7] to

perform extensive simulations of the model. For α =
0.0, we use 20 realizations of different lattice sizes com-
prising a number N = 250, 500, 1000, 2000 and 4000
of sites near the respective transition points K =
0.826, 0.830, 0.830, 0.832, and 0.833. After thermalization,
we record 106 measurements (taken after the flip of 1,
1, 1, 2 or 4 clusters, depending on the value of K, re-
spectively) of the energy E and magnetization M =
(qmax[ni]−N)/(q−1) in a time series file, where ni ≤ N
denotes the number of spins with “orientation” i = 1, ..., 8
in one lattice configuration. Obviously, it is sufficient to
store the integer N/q ≤ max[ni] ≤ N . We follow the same
procedure for simulations with α > 0. In this case, how-
ever, 72 independent replicas are generated for each lat-
tice size with 500, 1000, 2000, 4000 and 8000 sites. From
these data, we compute all the quantities of interest as
a function of temperature by means of reweighting tech-
niques [8]. For instance, the specific heat C(K) is calcu-
lated as

C(K) = [C(i)(K)] ≡ (1/R)ΣR
i C

(i)(K), (3)

where C(i)(K) = K2N(< e2 > − < e >2) corresponds
to the replica labeled by superindex (i), e is the free en-
ergy E normalized by the number of sites N , the square
brackets denote the replica average and the variable R
represents the number of replicas used in the simulations.
The replica average is computed over C(i) and not over
the energy moments because quenched averages should
be calculated at the level of the free energy and not the
partition function [9]. Finally, we determine the maximum
value, Cmax = C(KCmax), for each lattice size and study
the finite size scaling behavior of Cmax and KCmax . Other
thermodynamics quantities of the system have been ac-
cessed and analyzed along the same lines.

3 Results and conclusions

Our simulations with α = 0.0 indicate that the model dis-
plays a first order phase transition, in perfect agreement
with the results reported by Janke and Villanova [5]. How-
ever, at sufficiently high values of α (e.g., α = 0.5 and
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Fig. 1. Plot of the Binder parameter Bi(K) versus K for α =
0.5 and several lattices sizes (N = 500, 1000, 2000, 4000 and
8000 sites). The arrow indicates the position Bi(K) = 2/3.

α = 1.0), we observe a typical second order transition.
In order to verify the order of these transitions, we apply
finite-size scaling (FSS) [10] in conjunction with histogram
techniques. Initially we search for the minima of the ener-
getic fourth-order parameter

Bi(K) = 1− < e4 >

3 < e2 >2
· (4)

This quantity, also known as the Binder parameter, gives a
qualitative as well as a quantitative description of the or-
der of the transition [11]. It is known [12] that this param-
eter takes a minimum value Bi,min at the effective tran-
sition temperature Tc(N). One can show[13] that for a
second-order transition limN→∞(2/3− Bi,min) = 0, even
at Tc, while at a first-order transition the same limit mea-
sures the latent heat |e+ − e−|:

lim
N→∞

(
2
3
−Bi,min

)
=

1
3

(e+ − e−)2(e+ + e−)2

(e2
+ + e2

−)2
· (5)

In Figure 1, we exhibit the plot of Bi(K) versus K for
α = 0.5 and different lattice sizes (from N = 500 to
8000 sites). We can see that, in the limit of large lattice
sizes, the Binder parameter goes asymptotically to 2/3,
providing a qualitative confirmation for the presence of
a continuous transition in the system. For α = 0.0 (see
Fig. 2), however, the Binder parameter clearly goes to a
value which is different of 2/3. This is a sufficient condi-
tion to characterize a first-order transition. The order of
the transitions can be confirmed by plotting the values
of 2/3 − Bimin(K) against 1/N for different values of α.
While for α = 0.5 and 1.0 the curve goes to zero as we
increase the system size (Fig. 3), for α = 0.0 the quantity
2/3 − Bimin(K) approaches a nonvanishing value in the
limit of small 1/N (Fig. 4). At this point, we can assume
that a change in α from 0.0 to 0.5, should be followed by a
crossover at a value α = αc from a first order to a contin-
uous transition. Additional simulations are necessary to
determine the precise value of αc.
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Fig. 2. The same as in Figure 1, but for α = 0.0.
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Fig. 3. Plot of 2/3−Bimin(K) versus 1/N for α = 0.5 (circles)
and 1.0 (squares).
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Fig. 4. Plot of 2/3−Bimin(K) versus 1/N for α = 0.0.
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Fig. 5. Plot of the specific heat Cmax (circles) and suscepti-
bility χmax (squares) versus N for α = 0.0.
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Fig. 6. Plot of the Binder parameter Bi,min versus 1/N for
α = 0.0.

A more quantitative analysis can be carried out
through the FSS of the specific heat Cmax, the suscepti-
bility maxima χmax and the minima of the Binder param-
eter Bi,min. If the hypothesis of a first-order phase tran-
sition for α = 0.0 is correct, we should then expect, for
large system sizes, an asymptotic FSS behavior of the form
[5,9],

Cmax = aC + bCN + .... (6)
χmax = aχ + bχN + ... (7)
Bi,min = aBi + bBi/N + ... (8)

As depicted in Figure 5, our results for the scaling of
the specific heat and susceptibility are consistent with
equations (6, 7). In Figure 6 we show the scaling of the
Binder parameter minima, and again the first order phase
transition is verified. Next, we use the reweighting tech-
nique and FSS to calculate the magnetization fourth-order
Binder parameter and estimate the critical temperatures
for α = 0.5 and 1.0. For the largest lattice size, we obtain
Kc ≈ 1.484 and 2.584, respectively.
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Fig. 7. Logarithmic plot of the magnetization at the inflection
point versus the size system L for α = 0.5 (circles) and α = 1.0
(squares).
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Fig. 8. Logarithmic plot of the maximum susceptibility χmax

versus the size system L for α = 0.5 (circles) and 1.0 (squares).

In order to estimate the exponent ratios β/ν and γ/ν,
here we use the fact that the magnetization at the in-
flection point and susceptibility at Kχ,

max, should scale for
sufficiently large systems as

< |m| > |inf ∝ L−β/ν (9)

χ,max(L) = χ,(Kχ,

max(L), L) = ALγ/ν, (10)

where L =
√
N defines the linear size of the lattice. As

shown in Figure 7, the least-squares straight lines that
fit our simulation data give β/ν = 0.132 ± 0.007 and
0.126 ± 0.008 for α = 0.5 and 1.0, respectively. These
values are in good agreement with those obtained for
the Ising model on the Voronoi lattice (with constant
J) [4]. However, while γ/ν = 1.75 for the Ising model,
the best fits to our susceptibility data (Fig. 8) indicate
that γ/ν = 1.20 ± 0.07 and 1.45 ± 0.05 for α = 0.5 and
1.0, respectively. More calculations with larger lattices and

a large number of realizations are certainly necessary to
verify if the universality class is the same or not.

Recent studies [3] have already focused on models that
undergo second-order transitions in the pure system and
apparently display Ising critical behavior when impurities
are present. It is also interesting to note that systems with
quenched randomness (site or bond) appear to be in the
same universality class of the pure 2D Ising model. How-
ever, in most of these studies, the results do not seem to
be sufficiently accurate to clarify this aspect.

In the present work, we have shown that, by con-
sidering the eight-states ferromagnetic Potts model on a
Voronoi lattice with the coupling constant depending ex-
ponentially on the distance between neighbor sites, the
order of the transition changes from first to second order.
This is in agreement with the fact that randomness can
change the order of the transition [3]. In addition, we have
calculated the exponent ratios β/ν and γ/ν for the magne-
tization and susceptibility, respectively. For β/ν, the sys-
tem appears to belong to the same universality class of the
two-dimensional Ising model. On the other hand, the esti-
mated values we found for the critical exponent γ/ν at two
different values of α > 0.0 differs significantly from each
other and, moreover, from the Ising exponent reported in
literature, γ/ν = 1.75.

Our current work is devoted to the numerical calcula-
tion of a precise estimate for αc, i.e., the particular value
of α where the transition changes from first to second or-
der. In addition, we are performing extensive simulations
with large lattice sizes and number of realizations to char-
acterize the universality class of the present model.
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